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THE ASYMPTOTIC THEORY OF CONTROL SYSTEMS; 
1. STOCHASTIC AND DETERMINISTIC PROCESSES 

David S. Adorno 

In th i s  paper we s tudy the asymptot ic  behavior of a particular c l a s s  of control sys tems,  

with particular emphasis  being placed on the quest ions of convergence a n d  t h e  s teady-state  

forms of the loss function a n d  of the sys tem itself. T h e  concept  of policy equivalence i s  intro- 

duced a n d  used  t o  show that  a s tochas t ic ,  linear, first-order control s y s t e m  with quadratic loss 
function i s  policy equivalent t o  the deterministic system which depends only on the  expected 

states of t h e  system. With t h i s  theorem as justification, only determinis t ic  s y s t e m s  are 

considered for the remainder of the paper. The extension of th i s  top ic  t o  the  adapt ive control 

c a s e  (the case in which the  parameters of the random n o i s e  a r e  not known) i s  currently under 

s tudy  and  wil l  be reported on in a forthcoming paper. F o r  a n  appreciat ion of t h e  adapt ive control 

case ,  the reader i s  referred to Bellman [ l  and 21 a n d  Freimer [ 3  and 41. T h e  particular class 

of control s y s t e m s  referred t o  above i s  the c l a s s  of linear, first-order, matrix difference equat ions 

with quadrat ic  l o s s  criterion. 

For a n  N-stage process  in  t h i s  c lass ,  the technique of dynamic programming i s  u s e d  to 

determine the  optimal policy. From t h i s  technique, we obtain the forms of the l o s s  function and  

the state vector under optimal control. Convergence of the l o s s  function i s  es tab l i shed  by 

showing i t s  monotonic behavior together with uniform boundedness. At t h i s  point, i t  i s  noted that 

the loss function under optimal policy, the optimal policy, a n d  the  cont ro l  sys tem under optimal 

policy, a re  all functions of a cer ta in  sequence  of matr ices  R,. Hence,  t h e  character izat ion of 

the asymptotic properties of the sys tem all depend on the  asymptot ic  properties of the sequence  

R,. T h i s  sequence  i s  highly non-linear and  very difficult to s tudy i n  t h i s  form. Therefore, a 

technique i s  introduced t o  convert the non-linear sequence  into a set of two s imultaneous l inear  

difference equations. T h e  behavior of t h i s  system i s  then s tudied,  a n d  examples  a re  given. 

'This paper presents the results of one phase of research carried out at the Jet Propulsion 
Laboratory, California Institute of Technology, under Contract NASw-6, sponsored by the National 
Aeronautics and Space Administration. 
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1. INTRODUCTION 

Consider  the N-stage control system (hereafter referred to a s  the sys tem S) defined by  

the l i  near-vector s tochas t ic  difference equation 

X n  + 1  = AX, -t Y ,  t R,,, Xl  = C, n = 1, 2, 3,000, lV 

(Bold-face type represents  vectors  or matrices.) 

The  vectors  in Eq. 1 have the following interpretation; 

1. X,, is a p x 1 vector which denotes  the s t a t e  of the  s y s t e m  a t  s t e p  n. T h a t  

is, the sys tem is descr ibable  by p components, and the ith component A'. 
of X,, i = I ,  2, * - - ,  p denotes the s t a t e  of the ith component of S on s t e p  n. 

I ,  n 

2. A i s  a p x p constant  matrix, cal led the system transformation. 

3. Y,, is a p x 1 vector which denotes the amount of control that  will be forced 

on S a t  s t e p  n. The  choice of N control vectors  Y , ,  Y , ,  * * a ,  Y,,, for S 

symbolized by Y ,  is ca l led  a policy. 

4. R,, is a sequence  of independent, ident ical ly  distributed random vectors. 

The statement  that R,, is a random vector means that  R, i s  a p x 1 vector  

and the components Rin, i = 1, * * * ,  p are  random var iab les  with a joint  

di s t r i  bu ti on. 

5. C is a p x 1 vector which denotes the ini t ia l  s t a t e  of the system. 

If the system S were allowed to run without control (or equivalently Y ;  Y i  = 0, 

i - I ,  2 , * * - ,  N ) ,  then E q .  1 would reduce t o  

X,, + 1  = AX,, + R,,, X,  = C, n = 1,--, /V 

It is des i red  to coiitro! S so :ha: Xn - 9 ,  and,  we measlire the coat  of deviatios kom th is  zero- 

s t a t e  a t  the nth s t e p  by X i X , ,  where the prime denotes  transposition. Likewise ,  the cos t  of 

control a t  the nth s t e p  is SYi  Y, ,  6 > 0. Then,  for a particular policy Y ,  the  expected cost of 

operat ing th i s  /!'-stage control sys tem S becomes 

N N 

n = 1  n = l  
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where X n  i s  defined hy Eq. 1 and E denotes  mathematical expectation. We shall  u s e  th i s  quadrat ic  

form a s  the  l o s s  criterion for S. 

* 
Definition 1: The statement  that  Y i s  an optimal policy for S means that  

We denote L , ( C ,  Y * )  by L i ( C ) .  

Definition 2: The s ta tement  that a sys tem S, i s  po l i cy  equivalent  to the  s y s t e m  S means  tha t  if 

Y *  i s  an optimal policy in SI, then Y * i s  a l s o  an optimal policy in S, and 

conversely. 

Definition 3: The statement  that  S i s  deterministic means that  Rn = 0 with probability one, 

n = 1, 2, 3 , * - ,  . 

3 



Jet Proaulsion Laboratory Technical Release No. 34-73 

111. STOCHASTIC SYSTEMS 

Ijefore we can prove the policy-equivalence theorem s t a t e d  in the summary, a lemma wil l  

be needed. 

L e m m a  1. I,et X ,  be defined by Eq. 1. If E ( R , )  and c2(R , )  both ex is t ,  then 

where M, is the covariance matrix of the coordinates  of X , .  

Proof: 

\Vn = R, - ER,; then E(Z,) = 0 2 E(W,), E(ZiZ,) = 0 2 ( X n ) .  

L e t  n 2 2, X ,  = AX, - + Y ,  - + R, - 1 ,  Z, = X ,  - EX,,, and 

T h e  l a s t  identity follows from the fac t  that  X , - l  d o e s  not 

depend on R, - 
be independently dis t r ibuted,  E(Wi  - A Z, - 1 )  = E( W i  -1) A E(Z, - 1 )  = 0. 

Now the  form of E [Z; - 1  A '  AZ, -11 remains to be  determined. Let 
A ' A  = B ,  and note  tha t  B i s  real a n d  symmetric. In general ,  i f  Z is a 

random vector and B symmetric, then 13 = ( ( B . . ) ) ,  Z = (Zl, * * e ,  Zp),' 

but only on R, - 2, * * e ,  R l .  Since the R,  a r e  a s s u m e d  to  

' I  

P P  

where M i s  the covariance matrix for the coordinates of Z. Applying th i s  

r e s u l t  to the problem a t  hand, the lemma i s  es tabl ished.  

4 
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Theorem 1. 
equivalent  to the determinis t ic  system defined by 

T h e  s t o c h a s t i c  sys tem S, defined by Eq. 1 and s u b j e c t  to Eq.  3, i s  policy- 

EXn 1 = A E X ,  + Y n  + E R,, E X ,  = C ,  n = 1, 2 ,*** ,  N 

with l o s s  function 

N N 

when E(R,,) and a 2 ( R n )  exis t .  

Proof: 

Substitution in to  L N ( C ,  Y )  yie lds  

It i s  e a s y  to  es tab l i sh  the ident i ty  0 2 ( X , , )  = E ( X i  X , )  - (EX, )  ' ( E  X, , ) ,  

N N N 

From Lemma 1, a 2 ( X n  

covariance matrix of X , ,  ,, X,, ", e * * ,  X p ,  ,. Since  the  covar iances  a r e  formed from 

Xi, 
Y,. The asser t ion  now follows. 

= t race ( A  'AM,)  + a2(R,) ,  where hin i s  t h e  

- E Xi, n, the ef fec t  of control is cance l led ,  so tha t  0 2 ( X n )  i s  free of 

?he s igni f icance  of Theorem 1 i s  clear. I t  points  out that  the  optimal pol icy of a 

s t o c h a s t i c  sys tem in th i s  c l a s s  depends only on the  expected states, no matter  how wildly the  

sys tem f luctuates  about  the expected states. With th i s  theorem as just i f icat ion,  the  remainder 

of th i s  paper wil l  be  devoted t o  the deterministic system. 

5 
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111. DETERMINISTIC SYSTEM SOLUTIONS 

The ”stage control process  that we wish to ana lyze  now is Lq.  1 without noise ,  i.e., 

X ,  +, = AX, + Yn, X I  = C, n = 1, 2, .-, R; 

N N I L N ( C ,  A, Y) = 1 X i X ,  + 6 YiY,,  6 > 0 

At th is  point, i t  will be helpful to recal l  Bellman’s Pr inc ip le  of Optimality [ S I ,  “An optimal 

policy h a s  the property that  whatever the  initial s t a t e  and initial decis ion are, the  remaining 

dec is ions  must const i tute  an optimal policy with regard to the s t a t e  resul t ing from the  f i rs t  

decis ion,”  and apply i t  to our problem. 

r N N 1 

J 

But 

N N 

Therefore, i f  we require that  the l a s t  N - 1 s t e p s  be  optimal with regard to the  new-initial 

position X ,  = A C + Y,, we need merely to choose Y ,  properly. Hence,  

L;I,(C, A) = rnin [ C ’ C  + 8Y;Yl + L i - I ( A C  + Y,, A ) ]  ( 5) 
Y l  

T h e  required loss function i s  now the solution to th i s  funct ional  equation. To s o l v e  Eq. 5, note  

that L,(C,  A) = 0; therefore, 
* 

6 
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= C ' C  = C ' I C  

(where / i s  the  identity matrix) which occurs  when Y, = 0. T h i s  i s  cons is ten t  with phys ica l  

considerat ions.  Continuing in the same manner, 

* 
L2(C, A) = min [ C ' C  + 6Y;Yl + LT(AC + Y,, A)] 

y 1  

= min [ C ' C  + 6Y;Yl + (AC + Y,)'(AC + Y1)I 

Y 1  

= min [ C ' ( /  + A'A)  C + 2 C ' A ' Y l  + Y ; Y l I  
y 1  

= C '  [ I  + A'( /  + 6") A] C 

which occurs  when Yl = - (6 + 1)-l AC. This s u g g e s t s  Theorem 2. 

Theorem 2 

LiCC, A) = C ' R &  

R ,  = I ,  R N + ,  = I + A '  [ R i l  + 6" /I A, N = 1, 2,***  

Proof: T o  es tab l i sh  t h e  theorem rigorously, we  proceed by induction. 

I t  was  proved for N = 1, 2, so let t h e  induction hypothes is  be that  the theorem 

i s  t rue for N = K, and show that it i s  true for N = K + 1. From Eq. 5 

* 
L K  +,(C, A) = min [ C ' C  + 6Y;Y, + L i ( A C  + Y,, A)] 

Y 1  

7 
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By hypothesis ,  

L i ( A C  + Y 1, A) -- (AC + Y , )  R,(AC + Y 1) 

Subs t i  tution y ie lds  

Each term in the expression to be minimized i s  a s c a l a r ,  and  moreover, the  f i r s t  

term C ( I  + A /?,A) C is independent of Y 1. Accordingly, define 

which maps the vectors  Yl into the rea ls ,  and  

The minimum of F ( Y 1 )  will occur (RK i s  posi t ive definite) when Yl = Y ;  = 

- ( S I  + R,AC, which will yield the  desired result. 

* The dynamic programming approach u s e d  t o  obtain the form of L ,  in Theorem 2 will a l s o  

y ie ld  the optimal policy, Y* .  The proof of ?heorem 2 already gave  us the f i r s t  vector  in the 

optimal policy, 

S ince  X ,  depends  on Y, ,  Y2,**- ,  Y, -1, but not Y,, i t  i s  obvious t h a t  Y;,N(C) = 0 .  L e t  us 

denote  the i th  vector  in the optimal policy for the "stage process  (Eq. 4) a s  Y:, ,(C). Then  we 

can  s t a t e  Theorem 3. 

a 
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Theorem 3. 

* * 
YitN(C) = Y 1 , N , i + l  ( X I ) ,  i = 1, 2 , * - ,  N 

* 
where Xi denotes the state of S on the ith s tep  under optimal policy.  

To determine XT, we util ize Theorem 3 recursively and obtain Theorem 4. 

Theorem 4. 

(8) 

9 
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IV. ASYMPTOTIC THEORY 

The natural question a t  th i s  point i s  that  of the convergence of the loss  function under 

optimal policy. For the  remainder of t h i s  Section, the only policy u s e d  will be the optimal policy. 

Theorem 5, 

L ~ ( c ,  A) -. L ; ( C ,  A )  < 00 as N -+ 00 

Proof. 

Y ,  = - AC, Y i  = 0,  i = 2, 3, * * e ,  N, in which Y forces  S t o  t h e  zero-s ta te  a n  the 

L k ( C ,  A )  is uniformly bounded. To see this ,  consider  the  policy Y :  

second s t e p  and to remain 

LN(C,  A, Y )  = 

- - 

there afterwards. This policy has loss function 

N N 

1 x ; x n  + 6 Y ; Y n  
n = l  n =1 

which i s  independent of N. Since L i ( C ,  A )  is optimal, 

L i ( C ,  A) 2 L,(C, A, Y )  = C ' ( I  t 8 A ' A )  C 

for all N. T h i s  e s t a b l i s h e s  uniform boundedness. 

N o w  it will be demonstrated that L i ( C ,  A) is a monotonic, non-decreasinp 

function o f  N .  Since Y i  1, 

process;  i.e., 

= 0 ,  consider  th i s  policy for a n  h'-stage 

10 
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* 
T h e  proof of Theorem 5 simply shows that the sequence  Ln(C, A) a lways  converges; i t  

i s  not construct ive in that  it d o e s  not  yield the value of the limit or determine the ra te  of  

convergence. A par t ia l  resolution of these  i s s u e s  will now be attempted. 

Before we proceed further, note  tha t  the forms for L N ( C ,  A), Xi": 
* 

and Y;, are  dependent  

on R N .  T h i s  means  tha t  most  of the asymptotic theory wil l  depend on the character izat ion of 

lim R, as h: + m. T h i s  i s  ra ther  unfortunate in  the s e n s e  that the matrix algorithm defining RN 

is highly nonlinear. Hence, some thought will be given to the a n a l y s i s  of Eq. 6. 

Assume a solution in the  form R N  = UNV,' .  Then 

Assuming A t o  be non-singular, 

Le t t ing  

1 

s 
A U N t i  = V N  + - U ,  + A A ' U ,  

We s u c c e e d  in writing Eq. 6 as two simultaneous, linear, matrix difference equat ions with 

cons tan t  coefficients. Continuing i n  this form, from Eq. i i a ,  

11 
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1 
/3 = -  

8 
= A - '  [ P U N  + V,] + f i U , + ,  + AA'U,,,, 

= (,B/ + A A ' )  U IVt1  + PA- '  U, + [ U p , , ,  - A "  ( p i  + A A ' )  UNI 

= [ ( l  + P )  / + A A ' I  U N + l  - A'U,  

Therefore, 

U ,  + 2  = [ ( l  + P )  A" t A ' ]  U,  - A" A ' U ,  

which is a linear matrix difference equation of the second order with cons tan t  coeff ic ients .  Note 

that  U ,  2 V1, which is arbitrary. To simplify the algebra,  le t  B = A '  t (1 + p )  A - ' ,  
D -- - A- A ', and obtain 

Assume a solution in the form U, = Z'F, where 2 is a s c a l a r  and F a cons tan t  p x p matrix. 

Subst i tut ing into Eq. 12 and clear ing,  

(Z2/ - ZC - D )  F = 0 (13) 

In order that  non-trivial matr ices  F exis t  Mhich sat isfy Eq. 13, Z must sa.tisfy tlie determinantal, 
u r  character is t ic ,  equatiun 

I 7  1 h i s  charac te r i s t ic  equation is f l f  degree 2 p  in 2, and every ruot of  Eq. 14 w i l l  yield an F s o  that  

Z"F satisfies Eq. 13, which is a necessary  condition that it sa t i s fy  Eq. 12. 

12 
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The remainder of the technique will be i l lustrated by examples ,  and  a lemma wil l  be 

s ta ted  for the c a s e  p = 2. 

Lemnia 1. If p = 2, and A is non-singular, then the  character is t ic  equation (14) becomes 

Z4 - ( t race E) Z 3  t ( 18 1 - trace D) Z2 - ( t race  6 )  Z + 1 = 0 (15) 

Notice t h a t  in th i s  c a s e ,  if Z i s  a root of Eq. 15, then 1/Z is a root  of 15 a lso .  

Example 1. 

becomes 

L e t  A -- [i ;I , 5 = 1. Then 6 = 31 and D = - I ,  and Eq. 14 

Solving the quadratic, we get two d is t inc t  rea l  roots ,  each of multiplicity two, 

namely Zl  = ( 3  + &)/2 and Z, = (3  - JX )/2. Write UN = Z’YF t- ZtF,, 
and not ice  that  UN .-” Z Y F ,  s ince  0 < Z2 < 1 < Z,. To obtain V , ,  we go back 

t o  Eq. lla; 

= 2; (e:) F ,  -z; ( Js+ 1 ) F ,  

and hence,  

13 
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Therefore, 

which one can verify as the correct answer. 

Theorem 5 states that we have  convergence for all A and 8 > 0. T h u s ,  Example 2 is 
designed to show what can be done when A i s  singular. 

Example 2. 
the left by A and u s e  IZ2A - [(l + ,8> I + AA ' I Z + A ' I = 0 as the  

character is t ic  equation. This yields  1Z2[: :I - [ t  521 Z + [: :I I = 0, 
whose roots  are Zl = (7 + n3>3)4, 2 2  = (7 - 63)3)/4,  and 2, = 0. Notice that a 

s ingular  A may yield a character is t ic  polynomial of degree less than 2p.  Write 

UN = Zy F + Z i  F 2, (Z, = 0); then U, -,, Zy F 1. Again, VN can  be  

computed from Eq. l l a ;  

Let A = [: :I, 8 = 0.5. S i n c e  A is singular ,  multiply E q .  13 on 

= Z;[ZlA - PI - A A ' I  F1 + Z;[Z,A - PI - A A ' I  F 2  

Therefor e, 

Completing the calculat ions we find tha t  

I [ 9 - . J 3 3  

9 -  A, 6 - 1  1 R =  
4(& - 5) & - 1, 

14 
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The examples a l s o  illustrate Theorem 6. 

Theorem 6. R,v converges exponentially to R. 

A direct solution may be obtained for R when A = I .  In this  c a s e ,  the matrix equation to 

be so lved is 

L J 

' .  

or 

R = I +  [ R - '  + :j 

I + - - R  1 = R - ' +  (1 +:) I 

s 

Multiplying both sides by 6 R  and col lect ing terms, 

R 2  - R - 61 = 0 

Assume a solution in the form R = a / ,  where a is a real number then 

[ , 2 - . -  si I = O  

a =  
2 

15 
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Since R i s  posit ive definite, only the positive sign can be used,  and we obtain 

If p = 2 and 6 = 1, then 

1 + J 1 + 4 6  
R =  I 

2 

2 
which agrees with results  obtained. 

16 
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